skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taveras, Kassandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mountains and islands provide an opportunity for studying the biogeography of diversification and population fragmentation. Aotearoa (New Zealand) is an excellent location to investigate both phenomena due to alpine emergence and oceanic separation. While it would be expected that separation across oceanic and elevation gradients are major barriers to gene flow in animals, including aquatic insects, such hypotheses have not been thoroughly tested in these taxa. By integrating population genomic from subgenomic Anchored-Hybrid Enrichment sequencing, ecological niche modeling, and morphological analyses from scanning-electron microscopy, we show that tectonic uplift and oceanic vicariance are implicated in speciation and population structure in Kapokapowai (Uropetala) dragonflies. Although Te Moana o Raukawa (Cook Strait) is likely responsible for some of the genetic structure observed, speciation has not yet occurred in populations separated by the strait. We find that the altitudinal gradient across Kā Tiritiri-o-te-Moana (the Southern Alps) is not impervious, but it significantly restricts gene flow between the aforementioned species. Our data support the hypothesis of an active colonization of Kā Tiritiri-o-te-Moana by the ancestral population of Kapokapowai, followed by a recolonization of the lowlands. These findings provide key foundations for the study of lineages endemic to Aotearoa. 
    more » « less
  2. Mountains and islands provide an opportunity for studying the biogeography of diversification and population fragmentation. Aotearoa (New Zealand) is an excellent location to investigate both phenomena due to alpine emergence and oceanic separation. While it would be expected that separation across oceanic and elevation gradients are major barriers to gene flow in animals, including aquatic insects, such hypotheses have not been thoroughly tested in these taxa. By integrating population genomic from sub-genomic Anchored-Hybrid Enrichment sequencing, ecological niche modeling, and morphological analyses from scanning-electron microscopy, we show that tectonic uplift and oceanic vicariance are implicated in speciation and population structure in Kapokapowai (Uropetala) dragonflies. Although Te Moana o Raukawa (Cook Strait), is likely responsible for some of the genetic structure observed, speciation has not yet occurred in populations separated by the strait. We find that the altitudinal gradient across Kā Tiritiri-o-te-Moana (the Southern Alps) is not impervious but it significantly restricts gene flow between aforementioned species. Our data support the hypothesis of an active colonization of Kā Tiritiri-o-te-Moana by the ancestral population of Kapokapowai, followed by a recolonization of the lowlands. These findings provide key foundations for the study of lineages endemic to Aotearoa. 
    more » « less
    Free, publicly-accessible full text available November 26, 2025